

HOW TO SELECT INDUCTORS AND TYPES OF INDUCTORS

Inductor symbols

In electronic circuits, inductors serve a wide range of purposes, which has led to the existence of numerous types. This article briefly presents the methods for selecting inductors.

Common - Mode Inductors

Common - mode inductors are utilized for common - mode filtering in circuits. They are mainly categorized into ferrite common - mode inductors and amorphous common - mode inductors.

Ferrite Common - Mode Inductors

Advantages: They exhibit excellent high - frequency filtering characteristics.

Disadvantages: They are relatively large and have poor temperature stability.

Amorphous Common - Mode Inductors

Advantages: They are small in size, require fewer winding turns, and have good temperature stability.

Disadvantages: Their high - frequency attenuation characteristics are not as good.

Common-mode inductor design focuses on two core factors:

- **Copper wire cross-section:**

Select a proper size to avoid overheating, e.g., thicker wires for high-power, high-current circuits.

- **Core size:**

Match winding turns and wire thickness; undersized cores limit winding capacity, while oversized ones waste circuit space.

Differential - Mode Inductors

Selection of differential-mode inductors hinges on two key factors: magnetic saturation and temperature rise, with design requirements of zero saturation and reasonable temperature rise.

Magnetic Saturation

Governed by core material's saturation flux density (B_s); high- B_s materials fit high-current/high-magnetic-field scenarios.

Temperature Rise

Related to copper wire thickness and core loss—thicker wires (lower resistance) and low-loss cores reduce heat generation.

Key Formulas (Sinusoidal AC)

$$U = 4.44NBSF$$

$$U = 2I\pi FL = X_L \times I$$

(Where U =voltage, N =winding turns, B =magnetic induction, S =core cross-sectional area, F =frequency, I =current, L =inductance, X_L =inductive reactance)

B selection is critical:

B_s defines its upper limit; for high-frequency currents, B must be far lower than B_s to account for core loss.

Our Advantages

Our company's iron - silicon series inductors have a B_s value reaching 1.6T, and they also have low high - frequency losses. They are excellent choices for applications such as differential - mode inductors, filter inductors, BOOST inductors, and PFC inductors. The high B_s value provides the conditions for product miniaturization. At the same time, the low high - frequency losses enable the inductor to perform better under high - frequency conditions.

Applications of Different Inductors in Various Scenarios

Applications of Common - Mode Inductors

Power Supply Circuits

Common-mode inductors in computer power supplies filter common-mode interference, ensuring clean, stable power for motherboards and components and minimizing electromagnetic interference risks.

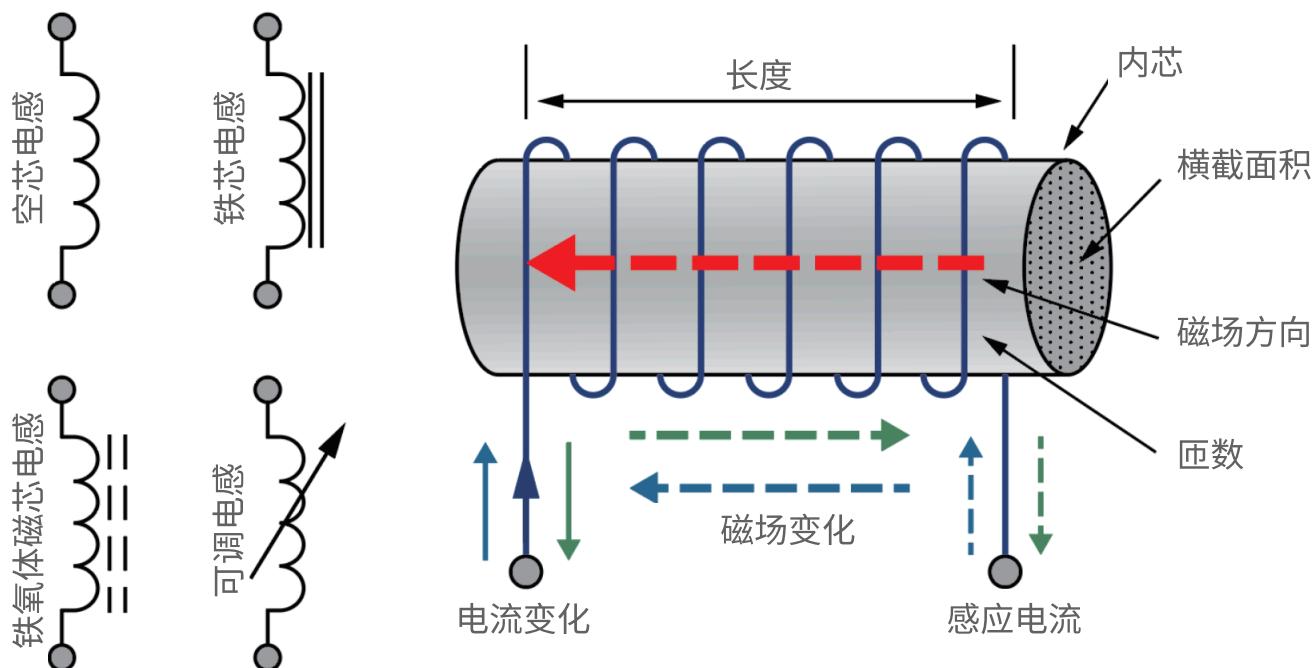
Communication Circuits

In high-speed data lines (e.g., Ethernet), common-mode inductors suppress common-mode noise, boosting data signal-to-noise ratio and ensuring reliable communication.

Applications of Differential - Mode Inductors

Switching Power Supplies

In buck switching power supplies, differential-mode inductors store/release energy during switching, smoothing output current/voltage and reducing power supply ripple.


Motor Drive Circuits

In motor drives, differential-mode inductors limit motor startup inrush current and suppress operational voltage spikes, protecting the motor and drive circuit.

HOW TO SELECT INDUCTORS AND TYPES OF INDUCTORS

电感符号

在电子电路中，电感用途广泛，因此类型丰富多样。本文将简要介绍电感的选型方法。

共模电感

共模电感用于电路中的共模滤波，主要分为铁氧体共模电感与非晶共模电感两类。

铁氧体共模电感

优势：具备优异的高频滤波特性。

劣势：体积相对较大，且温度稳定性较差。

非晶共模电感

优势：体积小、所需绕线匝数少，且温度稳定性良好。

劣势：高频衰减特性欠佳。

共模电感的设计需重点考虑两点

● 选择铜线的横截面积：

避免导线过热。例如，在大电流的大功率电路中，应选用横截面积更大的粗铜线，确保导线能承受电流而不发热。

● 选择尺寸合适的磁芯：

以便绕制铜线。磁芯尺寸需与绕线匝数、导线粗细相匹配——磁芯过小可能无法绕制足够匝数；磁芯过大则会占用电路过多空间。

差模电感

差模电感的选型相对复杂，主要受两大因素影响：磁饱和与温升。设计过程中，需满足电感不饱和、温升保持在合理范围的要求。

磁饱和

电感的饱和状态主要由磁芯材料的饱和磁通密度决定，不同磁芯材料的饱和磁通密度存在差异。例如，高饱和磁通密度的材料更适用于大电流、强磁场的应用场景。

温升

温升与铜线线径的选择、磁芯损耗特性相关。线径更粗的铜线通常电阻更低，可减少电流通过时产生的热量；此外，低损耗的磁芯材料也有助于降低温升。

正弦交流电下的差模电感计算公式

$$U = 4.44NBSF$$

$$U = 2I\pi FL = X_L \times I$$

式中： X_L 为感抗， U 为电压， N 为绕组匝数， B 为磁感应强度， S 为磁芯截面积， F 为频率， I 为电流， L 为电感值。

由公式可知，电感设计的核心关键在于选取合适的磁感应强度 B 值。对于不同材料而言，饱和磁通密度 B_s 决定了 B 值的选取上限。此外，在高频电流工况下，需考虑磁芯损耗的影响，选取的 B 值应远低于 B_s 。

我司铁硅系列电感的饱和磁通密度（ B_s ）高达 1.6 特斯拉，同时具备低高频损耗的特性，是差模电感、滤波电感、升压（BOOST）电感及功率因数校正（PFC）电感等应用场景的理想之选。

高 B_s 值为产品小型化提供了有利条件，而低高频损耗的优势，则能保障电感在高频工况下保持优良的运行性能。

各类电感的多场景应用

共模电感的应用

电源电路

在计算机电源中，共模电感可滤除共模干扰信号，保障供给计算机主板及其他元器件的电源洁净稳定，降低电磁干扰影响计算机正常运行的风险。

通信电路

在以太网等高速数据传输线路中，共模电感能够抑制共模噪声，提升传输数据的信噪比，保障数据通信稳定可靠。

差模电感的应用

开关电源

在降压型开关电源中，差模电感可在开关过程中存储与释放能量，平滑输出电流与电压，减小电源输出纹波。

电机驱动电路

在电机驱动电路中，差模电感可以限制电机启动时的浪涌电流，同时抑制电机运行过程中产生的电压尖峰，保护电机及驱动电路免受损坏。